
JAVASCRIPT
LIBRARY

JavaScript
CREATE YOUR OWN

FR
EE

Sagar Kumar

INDEX
1) Setting up your project

2) Creating your first JavaScript Library

1

4

Hello, dear reader! Are you still using jQuery for your projects? If so, it’s time to
rethink that approach. Instead of relying on jQuery, why not take a step forward
and create your very own JavaScript library? In this chapter, I’ll guide you
through the process of building a lightweight, fast, and easy-to-use library.

But before we begin, let’s take a moment to understand why creating your own
library is a great idea.

Why Not jQuery?
jQuery has been a popular library for simplifying DOM manipulation and
AJAX calls. However, modern JavaScript has evolved, and many of jQuery’s
features are now natively available in the language itself.
Creating your own library not only helps you learn but also gives you
complete control over its functionality.

Advantages of Our Library:
Lightweight and super fast.
No need to memorize jQuery’s syntax.
Simplifies the code-writing process, just like jQuery.
Enables direct use of JavaScript properties and methods, something jQuery
abstracts away.

Setting up your project

Chapter 1

INTRODUCTION:

1

Looks exciting, right? Let’s get Started

Step 1: Setting Up Your Project
First, let’s create a basic project structure. Follow these steps:

Create a Folder:1.
Create a new folder anywhere on your system. You can name it
something like my-library-project.

Open the Folder in Visual Studio Code:2.
If you’re using Visual Studio Code (VS Code), open the folder by
navigating to File > Open Folder or simply drag and drop the folder into
the editor.

Add the Required Files: Inside the folder, create the following files:3.
index.html – This will be the HTML file for testing and demonstration.
style.css – This file will contain the styling for our project.
app.js – This will hold our JavaScript code for testing.
mylibrary.js – This is where we will write the code for our custom library.

Your project structure should look like this:

Step 2: Understanding How jQuery Works
Before building our library, let’s briefly see how jQuery simplifies things. In this
example, we’ll create some basic HTML elements and apply styles to them.

2

Create a Container Element:1.
 Open the index.html file and add the following code:

The <div class="container"> contains three child elements with the class box.
These will be styled as basic boxes later.
Don’t forget to link style.css and the two JavaScript files (mylibrary.js and
app.js) at the bottom of the body section.

2. Apply Basic Styles:
Open the style.css file and add the following styles:

This will center the boxes on the screen and apply a simple blue color to them.

3

Creating your first JavaScript Library

Chapter 2

INTRODUCTION:
In this chapter, we will create a custom JavaScript library that can select
elements, apply styles, and handle events—just like jQuery. However, unlike
jQuery, this library will allow you to use native JavaScript properties and
methods, giving you more flexibility and control.

Let’s dive in!
The select() Function: An Overview
Our library revolves around a single function, select(), which simplifies common
tasks such as selecting DOM elements, applying styles, and adding event
listeners. Here's the complete function:

4

Input:
A string styles containing valid CSS rules (e.g., "color: red; font-size: 20px;").

Output:
If a styles argument is provided, the method applies the styles to the
element.
If no argument is provided, it returns the current inline styles of the element

Step 1: Selecting Elements
The first step is to select the elements that match a given CSS selector. This is
done using the document.querySelectorAll() method:

Method 1: The makeUp() Method
The makeUp() method allows you to apply inline styles to an element or retrieve
its current styles.

Input: A string selector, such as .class (for class), #id (for ID), or tagname (for
HTML tags).
Output: A NodeList containing all matching elements in the DOM.

Step 2: Adding Methods to Each Element
Once we have the NodeList, we loop through each element and add custom
methods to extend its functionality.

5

Step 3: Handling Single vs. Multiple Elements
The select() function determines whether the selector matches a single element
or multiple elements. If only one element matches, it returns the element
directly. Otherwise, it returns the entire NodeList.

Method 2: The on() Method
The on() method simplifies adding event listeners to elements.
Input:

event: A string specifying the event type (e.g., "click", "mouseover").
callback: A function to execute when the event occurs.

Output: None. It attaches the event listener to the element.

Example Code:

Example Code:

Example Code:

6

Why Our Library Is Better Than jQuery
Here are some reasons why this custom library stands out:

Lightweight: Unlike jQuery, our library has no external dependencies and
focuses on essential features.

1.

Direct JavaScript Methods: You can still use all native JavaScript methods and
properties on the selected elements.

2.

Customizable: You can easily add more methods to extend the functionality.3.
Learning Opportunity: By building your own library, you gain a deeper
understanding of JavaScript and DOM manipulation.

4.

2. JavaScript Example:

Step 4: Using the Library
Now that we’ve built the library, let’s see how it works in practice.
1.HTML Setup:

https://code.jquery.com/jquery-3.7.1.min.js

Click on the link above and take a look at how large the jQuery file is, which is not
necessary for us. Instead, create your own JavaScript library.

7

https://code.jquery.com/jquery-3.7.1.min.js

Enhancing the Library (Optional)
Want to expand the library further? Here are some ideas:

Add a method for toggling classes, such as toggleClass(className).
Add a method for AJAX calls, similar to $.ajax() in jQuery.
Implement animations, such as fading in or out elements.

--

8

Thank You

